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In the Kuramoto model, a uniform distribution of the natural frequencies leads to a first-order �i.e., discon-
tinuous� phase transition from incoherence to synchronization, at the critical coupling parameter Kc. We obtain
the asymptotic dependence of the order parameter above criticality: r−rc� �K−Kc�2/3. For a finite population,
we demonstrate that the population size N may be included into a self-consistency equation relating r and K in
the synchronized state. We analyze the convergence to the thermodynamic limit of two alternative schemes to
set the natural frequencies. Other frequency distributions different from the uniform one are also considered.
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I. INTRODUCTION

Synchronization is a universal phenomenon that plays an
important role in all natural sciences as well as in technology
�1,2�. In particular, the synchronization of populations of glo-
bally coupled oscillators with distributed natural frequencies
has been an object of study since very early times, mainly in
a biological context �3�. Later, it has found application in
other areas, such as Josephson junctions �4�, nanomechanics
�5�, etc. When increasing the coupling parameter, these sys-
tems undergo transitions from a totally incoherent state to a
partially coherent state where part of the population becomes
entrained sharing the same frequency. Interestingly, there are
several analogies with the phase transitions in statistical me-
chanics �6�. Thus, one may define an order parameter that
usually grows continuously from zero �the incoherent state�
when the coupling parameter exceeds a threshold value,
analogously to a second-order phase transition. Nonetheless,
in some situations �7–9�, mutual entrainment occurs in an
abrupt way �a first-order phase transition�. After an infinitesi-
mal variation of the coupling strength a macroscopic �i.e.,
order N� part of the population becomes synchronized. One
may speculate that first-order phase transitions may be of
interest for practical applications, if one pursues a system
exhibiting an abrupt off-on switch.

The most simple example of a first-order phase transition
is found in the Kuramoto model �10� when the natural fre-
quencies are uniformly distributed. In this case, it is known
that all the population becomes synchronized in a single step
�9,11�. We obtain here the asymptotic dependence of the or-
der parameter after criticality, which exhibits a critical expo-
nent 2 /3.

Still, one of the open problems in the Kuramoto model is
to fully understand the finite-N behavior. As we show below,
the simplicity of the uniform frequency distribution allows to
cope with finite-size effects in an original way, providing
analytic and numerical results. Some of these results apply to
other frequency distributions with compact support.

This paper is organized as follows. In Sec. II, we present
the Kuramoto model, and show some numerical results that

motivated this work. In Sec. III an infinite population is con-
sidered, finding the asymptotic dependence of the order pa-
rameter after criticality. In Sec. IV, we study finite en-
sembles, finding �a� an N-dependent formula for the order
parameter, and �b� different convergence rates to the thermo-
dynamic limit for alternative sampling schemes of the natu-
ral frequencies. Section V is devoted to analyzing frequency
distributions different from the uniform one. Finally in Sec.
VI the main conclusions of this work are summarized.

II. THE KURAMOTO MODEL

The Kuramoto model is probably the most studied model
of synchronization in a population of oscillators with all-to-
all coupling �12�. The state of each oscillator is described
only by a phase variable �this stems from the the fact that, at
small coupling, only the phase of a self-sustained oscillator
is affected by the interaction�. The phase � j of each oscillator
satisfies the following ordinary differential equation:

�̇ j = � j +
K

N
�
l=1

N

sin��l − � j� �1�

where � j are the natural frequencies, and K is the parameter
controlling the coupling strength.

To quantify the state of synchronization, Kuramoto pro-
posed to use a complex-valued quantity �so-called order pa-
rameter to emphasize the relation with phase transitions�

rei� =
1

N
�
l=1

N

ei�l. �2�

It allows us to set the governing equation �1� in the form

�̇ j = � j + Kr sin�� − � j� . �3�

If the natural frequencies are distributed �i.e., � j�� j��, syn-
chronization only appears above some coupling threshold.
Here, we consider the case of evenly spaced natural frequen-
cies

� j = − � +
�

N
�2j − 1� , �4�

which, like all symmetric frequency distributions, can be as-
sumed centered at zero �by going into a rotating frame if*Electronic address: pazo@pks.mpg.de
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necessary�. Throughout this paper, the numerical integration
of the Kuramoto model �Eq. �1�� is carried out by means of a
fourth-order Runge-Kutta method with time step �t=0.1.

Recently, Maistrenko et al. �13� studied the Kuramoto
model with a small number of oscillators and natural fre-
quencies distributed uniformly �or close to that�. They found
that the synchronized state robustly splits into several clus-
ters with different average frequencies. It is shown there, and
in Fig. 1, that for N=3 and 5, the synchronized state splits
directly into N clusters. But, for values of N other than 3 and
5 the scenario is not so simple. As N increases, the number of
splittings for going from one to N clusters, increases as well.
Hereafter, we denote by Ks the coupling at the frequency
splitting from the synchronized state. In congruence with the
thermodynamic limit �see below�, all the splittings �including
the first one at K=Ks�N�� must accumulate at Kc as N→�.
Kc is the abrupt transition point for an infinite population.

III. INFINITE POPULATION

In this section, we briefly study the Kuramoto model for a
uniform frequency distribution. Some of the formulas will be
later compared to those obtained for a finite population in
Sec. IV. We also go one step further, and deduce an explicit
formula, with critical exponent 2 /3, for the dependence of
the order parameter after criticality.

In correspondence to the finite case Eq. �4�, we consider a
uniform density of the natural frequencies:

g��� = � 1

2�
for ��� � � ,

0 for ��� 	 � .
� �5�

We first note that due to the invariance under global rota-
tion, for stationary solutions, we can set a vanishing phase
for the order parameter in Eq. �2�, �=0, without lack of
generality. Kuramoto’s classical analysis gives the order pa-
rameter equation

r = 	ei�
 = 	cos �
 � �
−�

�

cos ����g���d� . �6�

In the totally locked regime, we obtain then

r = �
−�

�

g���1 −
�2

K2r2d� �7�

⇒r =
1

2
1 −

�2

K2r2 +
Kr

2�
arcsin� �

Kr
� . �8�

Equation �8� gives implicitly the dependence of r on K. A
solution exists only for Kr
�. At the critical point Kcrc=�,
the locked solution disappears with rc=� /4. The correspond-
ing value of the coupling is Kc=4� /�, which is precisely the
value where the incoherent solution r=0 becomes unstable
according to the classical result �14� for all unimodal distri-
butions Kc=2/�g�0�, Two remarks are in order. First, in con-
trast with strictly unimodal distributions the transition is of
first-order type: the order parameter “jumps” from zero to rc.
Second, at Kc all the population becomes entrained. This last
remark is quite important because it simplifies both numeri-
cal and theoretical analyses. Also, note that when synchro-
nized, the oscillator phases are spanned along an interval �of
length � at K=Kc�. When K is increased r grows from rc to
1 in the K→� limit.

The first result of this paper is the dependence of r on K,
just above the phase transition. First of all, we make a
change of variables onto Eq. �6� as usual �see, e.g., �1,15��:

r = Kr�
�min

�max

cos2� g�Kr sin ��d� , �9�

where �max ��min� is the phase of the oscillator with fre-
quency � �−��. After an expansion above criticality,

K = Kc + �K , �10�

r = rc + �r , �11�

�max = − �min = �/2 − �� , �12�

and discarding the trivial incoherent solution r=0, we get

1 =
Kc + �K

2�
��

2
− �� +

1

2
sin�� − 2���� . �13�

An expansion of the sine function up to the cubic term yields

FIG. 1. Average frequencies ��̄ j� as a function of the coupling
for different population sizes. The natural frequencies are taken
according to Eq. �4� with �=1/2. By Ks we denote the value of K
for the first splitting bifurcation. The critical point Kc in the ther-
modynamic limit �N→�� is located at the dotted line.
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0 =
�

2
�K −

8�

3�
��3. �14�

Thus the problem reduces to finding ��, from Eq. �3�;

� = �Kc + �K��rc + �r�sin��/2 − ��� �15�

⇒�� � 8

�
�r +

�

2�
�K . �16�

Introducing this expression into Eq. �14�, a formula for the
asymptotic dependence of �r on �K is obtained:

�r = � 9�7

217�2�1/3

�K2/3 −
�2

16�
�K . �17�

The result is compared in Fig. 2 to the exact solution, arising
from numerically solving Eq. �8�. It confirms that the order
parameter grows from rc with a power of K−Kc with expo-
nent 2 /3. To our knowledge, this exponent and expression
�17� have not been reported before.

IV. FINITE POPULATION

Finite-size effects in the Kuramoto model have been pre-
viously considered in the literature. Among the different ap-
proaches, we may list the investigation of the divergence of
fluctuations around criticality �6,16�, the observation of
ephemeral coherent structures in the incoherent state �17�,
and the reduction to a normal form in the case of identical
natural frequencies with additive noise �18�. Also, very re-
cently, Mirollo and Strogatz �19� have analyzed the �local�
stability of the fully locked state for a finite population, find-
ing that the locked solution is stable and disappears in a
saddle-node bifurcation1 �as already observed in �13� for
small N�.

In this section, we show that for the uniform frequency
distribution finite-size effects—on the order parameter and
on the loss of the synchronization—can be studied in a dif-
ferent way.

A. Dependence of the order parameter on K

For a finite population in the synchronized state �K
Ks�,
the order parameter is expressed �in correspondence with the
integral form �7�� by

r =
1

N
�
j=1

N 1 −
� j

2

K2r2 �18�

where the order parameter r is a time-independent quantity.
We devote the following lines to deducing an N-dependent
self-consistency equation �that reduces to Eq. �8� in the N
→� limit�. It is accurate provided that K is not too close to
Ks.

According to Eq. �4�, the natural frequencies of the finite
population are taken with step ��=� j+1−� j =2� /N. There-

fore, the order parameter �18� is equivalent to a Riemann
sum with constant step of the integral found in the con-
tinuum limit �7�. The discrepancy between both cases is, at
the leading order, dependent on f� �where f���
�1− �� /Kr�2�. Hence, for one Riemann box centered at � j,

�
��

f���d� = f�� j��� +
f��� j�

24
��3 + O���5� . �19�

Therefore, for the finite-N case we may approximate Eq. �18�
by

r �
1

2�
�

−�

� 1 −
�2

K2r2d� −
�2

6N3�
j=1

N

f��� j� . �20�

In this expression, the sum may be approximated by its cor-
responding integral,

�
j=1

N

f��� j� =
N

2���−�

�

f����d� + O�N−2��
�

N

2�
f�����

−�

�

= −
N

�KrK2r2/�2 − 1
, �21�

and we obtain a self-consistency equation for a finite popu-
lation of N oscillators:

r =
1

2
1 −

�2

K2r2 +
Kr

2�
arcsin� �

Kr
� +

�N−2

6KrK2r2/�2 − 1
.

�22�

With respect to the equation for the thermodynamic limit
�Eq. �8��, there is an additional term depending on N. Plots of
the numerical solutions for N=10 and 100 are shown in Fig.
3. Equation �22� is deduced from the continuum equation,
and therefore cannot intersect the line r=� /K, because sev-
eral terms explode. Note that adding more terms of the series
in Eqs. �19� and �21� does not overcome this problem. This
suggests that, unfortunately, the behavior very close to Ks
cannot be deduced by simply manipulating the equations for
an infinite population. Nonetheless, out of that region, the

1In the presence of an irrelevant degenerate eigenvalue at zero due
to global phase-shift invariance.

FIG. 2. Log-log dependence of r on K in a neighborhood of
criticality for �=1/2. The circles correspond to numerical solutions
of the self-consistency condition �8�, the solid line depicts Eq. �17�,
and the dotted straight line arises taking the leading �K2/3 term only.
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solution of Eq. �22� reproduces the numerical results, even
for such a relatively small number of oscillators as N=10
�Fig. 3�a��.

B. Thermodynamic limit of the first frequency splitting

The arrangement of the natural frequencies in Eq. �4� con-
verges to the uniform frequency distribution �5�. But, as ex-
plained above, this limit is nontrivial: a first-order phase
transition is substituted, when N becomes finite, by a set of
frequency-splitting bifurcations accumulating at Kc. Numeri-
cally, the study of these bifurcations is quite involved. None-
theless, the point where, as K decreases, the first splitting
occurs �K=Ks�, can be accurately computed. This is possible
because above Ks the system is in a fixed point state. Our
simulations, Fig. 4, indicate that for the arrangement in Eq.
�4� Ks converges to Kc

− according to a power law:

Kc − Ks�N� � N−. �23�

Note that Ks and Kc are both proportional to �, so �1.5 is
independent of �.

The recipe followed to mimic the thermodynamic limit
was to divide the frequency distribution g��� in N parts of
equal area taking each � j at the center of each block.

Nonetheless, there are many �infinite in fact� possible dis-
crete arrangements with the same continuum limit, but for
arrangement �4�  is large enough to deduce the decay for
other distributions, by just considering the variation of the
effective �. For instance, if the natural frequencies are taken
as in �9,20�:

� j = − � +
�

N − 1
2�j − 1� , �24�

one observes that Ks converges to Kc
+ with a power law �see

the �’s in Fig. 4�, but more slowly than for the arrangement
in Eq. �4�. As the extrema of Eq. �24� are fixed, a change in
N varies the effective width of the equivalent continuous
distribution: �ef f =�+� / �N−1�. Hence, from Eq. �23� we get

Ks�N� =
4�ef f

�
− �N− � Kc +

4�

�N
+ O�N−� , �25�

which agrees with the observed result �see the dashed line in
Fig. 4�.

V. OTHER FREQUENCY DISTRIBUTIONS

In this section, we briefly discuss the extension of the
previous results to other frequency distributions supported on

TABLE I. Three frequency distributions considered in Sec.
V.

g��� Ks
�

Parabolic 3

4�3 ��2−�2�
32�

9�

Triangular �− ���
�2

6�

3�−4

Hat shaped

2

3� � �� � �
�

2 � 36�

8�+331

3� ��

2
� �� � ���

FIG. 4. Log-log dependence of the distance from Ks to Kc on the
population size ��=1/2�. Squares and diamonds correspond to dif-
ferent arrangements of the natural frequencies, Eqs. �4� and �24�,
respectively. In the first case, the last two decades were fitted with a
straight line, yielding a slope −=−1.502. The dashed straight line
log10�4� /��−x arises from Eq. �25�.

FIG. 3. Dependence of r on K for finite populations: N= �a� 10
and �b� 100; �=1/2 in both cases. Values obtained from a direct
computation of the Kuramoto model are marked by �. The first
frequency splitting is observed at Ks �for K�Ks , r is no longer
constant in time�. The solid line is obtained solving Eq. �22� nu-
merically. It matches the computed values, but fails when approach-
ing the line r=� /K. As a reference, the solution for an infinite
population is shown with circles �after numerically solving Eq. �8��;
the critical point �Kc ,rc� is marked with a � symbol.
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a finite interval �−� ,��. We first note that for nonuniform
distributions the loss of complete synchronization and the
critical point where the incoherent solution becomes unstable
do not coincide: Ks

��Ks�N→��	Kc. In other words, there
exists an intermediate range of partial entrainment in which
one part of the population is synchronized whereas the re-
maining oscillators drift.

As model distributions we considered three unimodal dis-
tributions listed in Table I. As for the uniform distribution,
the desynchronization point Ks

� may be computed analyti-
cally using Eq. �7�.

We focused on two simple sampling schemes to discretize
distributions supported on a bounded interval: �i�
��̃j

�̃j+1g���d�=2� /N , �̃1=−� ,� j = ��̃ j + �̃ j+1� /2; �ii�
��j

�j+1g���d�=2� / �N−1� ,�N=−�1=�. Applying �i� and �ii�
to a uniform distribution one gets the arrangements in Eqs.
�4� and �24�, respectively.

For both schemes and the three frequency distributions in
Table I, the approach of the first frequency splitting to the
thermodynamic limit satisfies a power law �Ks

�−Ks�N��
�N−, as occurred for the uniform distribution �Ks

�=Kc in
this case�. For sampling �ii� we find that the value of the
exponent is always �1. However for �i�, different expo-
nents arise, in contrast to �1.5 obtained for the uniform
distribution: �0.5 for triangular and parabolic distribu-
tions, and �1 for the hat-shaped one. We have checked
that this exponent arises for other distributions with an
abrupt boundary �g�±��	0�.

Another interesting power law is the shift of the order
parameter in the synchronized state: �r�K ,N�−r�K ,N=���
�N−�. For sampling scheme �i� theoretical results may be
obtained, using again arguments based on the Riemann sum.
If g�±��	0—e.g., uniform �see Eq. �22�� or hat-shaped
distributions—one may obtain a formal solution2 that yields
�=2. However for distributions that approach zero at �
= ±�, the “Riemann-sum approach” is not valid due to diver-
gences at �= ±�. One must, therefore, analyze these points
separately. In particular, one obtains �=3/2 for linearly de-
caying distributions �g��→ ±��������, e.g., parabolic
and triangular distributions�. Also, our simulations indicate
that for sampling �ii� ��1, irrespective of the frequency dis-
tribution �for the uniform distribution �=1 is straightforward
due to the O�N−1� effective shift of ��.

Finally, we note that a recipe similar to �i� consisting in
taking the frequencies at the median �instead of the center� of
each block3 exhibits the same exponents  ,� than scheme
�i�.

VI. CONCLUSIONS

In the present paper, the first-order phase transition arising
when imposing a uniform frequency distribution on the
Kuramoto model has been studied. In the case of an infinite
population, we have found an explicit asymptotic depen-
dence of the order parameter after criticality, Eq. �17�.

For a finite population, our first conclusion is that in con-
trast to strictly unimodal distributions �Cauchy, Gaussian,
parabolic, etc.� of the natural frequencies, which exhibit tran-
sitions of second-order type, the thermodynamic limit is non-
trivial for a uniform distribution. In the finite-N case, the
synchronized state does not split directly into N clusters, but
through a cascade of frequency splittings. To be congruent
with the first-order phase transition predicted in the thermo-
dynamic limit all the splittings must accumulate at Kc as N
→�.

The dependence of the order parameter r on the coupling
K, has been expressed in an easy-to-compute formula, Eq.
�22�. In this formula, the population size N enters explicitly,
and it allows, except very close to the desynchronization
point, an accurate computation of the order parameter, even
for small N.

Two sampling schemes to set the natural frequencies have
been compared. The scheme we propose in Eq. �4� converges
to the thermodynamic limit faster than another used in the
literature �Eq. �24��. The comparison is based on the different
exponent of the power-law convergence for the point of the
first frequency splitting ��1.5 vs =1� and the shift of the
order parameter ��=2 vs �=1�. Other frequency distributions
�with compact support� different from the uniform one have
been discussed. Among the infinite possible sampling
schemes, those studied here appear the most natural ones to
us. Nonetheless, further investigation is needed to assess the
existence of an optimal sampling scheme to mimic the ther-
modynamic limit with a finite population.

In spite of the lack of structural stability under perturba-
tions of the uniform frequency distribution �in the thermody-
namic limit, but not in the finite case as proved in �13��, the
results in this paper could be useful in order to understand
more complicated schemes, like oscillator networks �21�.
The use of a frequency distribution with an abrupt transition
seems more suited to better resolve critical points in this kind
of systems.
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2r=�−�
� gf d�− �N−2 /24��−�

� ��gf�+2g�f�� /g2�d�.
3�� j

� j+1g���d�=2� /N=2�−�
�1g���d�.
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